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1 Introduction

In a previous report(l], direct numerical simulation of turbulent fluid flow between two
parallel flat plates was described, and the results of tests that showed the close match
between the simulation and nature were presented. This report examines the flow field in
more detail.

The direct simulation is accomplished by solving the equations governing the motion
of an incompressible fluid, which are the Navier-Stokes equations:

ov

1
ot [

and the continuity equation:
V. = 0. (2)

In these equations, v is the instantaneous three dimensional velocity vector, ¢ is the time, p
is the density of the fluid, p is the hydrodynamic pressure, and v is the kinematic viscosity.
Here the coordinate system is Cartesian, and (z,y, z) are directions streamwise, normal to
the flat plates, and spanwise with corresponding velocity components (u, v, w).

Velocity and length are made dimensionless in this report with the kinematic viscosity,
v, and the skin-friction velocity, u*:

ut = = ot =22, (3)
u* v

In this numerical study, the dimensionless distance between the flat plates was 300 viscous
units to give a Reynolds number of 2260 (a pipe Reynolds number of approximately 8,000).
The Reynolds number is '—‘f;ﬁ where u; is the streamwise bulk velocity, and was 13.8 in
viscous units.

If the instantaneous velocity vector is replaced in Equations 1 and 2 with a velocity
vector that is decomposed into a mean flow, V, and a fluctuating velocity, ¥, such that:

v=V+¥ (4)

then the resulting “Reynolds-decomposed” Navier-Stokes equations contain an additional
tensor called the Reynolds stress tensor. This report focuses on one part of this tensor, the
Reynolds shear stress, @# (see Figure 1), and its relation to the production of turbulence.

2 Description of Wall Bounded Turbulence

Work in the direct simulation of wall turbulence has produced a description of events,
although a theory for wall turbulence is at least a few years away. The central problem
is to determine how velocity fluctuations (fluid turbulence) are generated and sustained
[2]. Thus, the question to be answered is: how is energy transferred from the pressure
gradient to the velocity fluctuations? In an effort to answer this, Hanratty [2] developed




the picture first presented by Townsend [3]. Hanratty suggests that near wall eddies, with
their rotational axis aligned in the streamwise direction, have inflows and outflows that are
of the same strength and that, in a time-averaged sense, the in- and outflows are coupled.
The eddies create streamwise velocity fluctuations by bringing low momentum fluid from
the wall into the outer flow. The opposite is also true; i.e., they carry high momentum
fluid toward the wall. High momentum fluid is transported by negative (toward the wall)
normal velocities; low momentum fluid is transported by positive normal velocities. Hence,
with this transfer process, when the normal velocity is positive, the fluctuating streamwise
velocity is negative. This means that both in- and outflows are associated with values of
the Reynolds shear stress that are negative.

For flow between two flat plates, the production of turbulent kinetic energy is given by:

——dU*

K= —utor e (5)

where k is the production term and U* is the average streamwise velocity. Thus, pro-
duction of turbulent kinetic energy, in an instantaneous sense, is the product of negative
Reynolds shear stress and the mean velocity gradient. Figure 2 shows the time-averaged
Reynolds shear stress and the production of turbulent kinetic energy versus distance from
the wall. The region of significant turbulence production is between 5 and 45 viscous units
away from the wall, and is a maximum near 12 viscous units from the wall. The Reynolds
shear stress is a maximum near 30 viscous units from the wall.

3 Results

3.1 Distribution of Reynolds Shear Stress

Figure 1 shows a simple view of the Reynolds shear stress and its contribution to the
production of turbulent kinetic energy. The fluctuating normal velocity is displayed on the
ordinate and the fluctuating streamwise velocity on the abscissa; the resulting plot shows
the four “quadrants” of the Reynolds shear stress. Reynolds shear stress in the firet and
third quadrants reduces the production of turbulent kinetic energy; the second and fourth
quadrants contribute to the turbulent kinetic energy. This quadrature is helpful in the
analysis of some of the following figures.

The distribution of Reynolds shear stress among the quadrants varies with distance from
the wall, and this is shown in Figures 3 through 10. Also shown in the figures is the fraction
of the Reynolds shear stress contributed by values of #% lower than some “threshold” value.
The threshold varies from zero to four in the figures because the Reynolds shear stress is
made dimensionless with the square of the friction velocity. The values along the ordinate
are normalized with the total Reynolds shear stress; hence, for a threshoid level of zero,
the total stress has a value of one.

Figure 3 shows the distribution at 1.62 units from the wall, where most of the Reynolds
shear stress comes from quadrant 4 events. At 8.77 units from the wall (Figure 4), slightly
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Figure 1: Reynolds Shear Stress Quadrature

more than half of the Reynolds shear stress is above a threshold of one. Quadrant 4 events
still dominate, although quadrant 2 events are significant.

Where the production of turbulence is a maximum, y* = 11.4 (Figure 5), quadrants 2
and 4 are roughly equal in their contribution, which is 120% of the total. Quadrants 1
and 3 effectively remove the excess 20%. Now, more than three quarters of the Reynolds
shear stress is above the threshold of one. At a location near the maximum Reynolds
stress, y* = 17.7 (Figure 6), the levels within quadrants 2 and 4 have reversed, although
their total is similar to the location where the production was & maximum. Almost 90%
of the Reynolds shear stress is above the threshold of one.

The remaining plots of the Reynolds shear stress distribution are not in the region of
significant turbulence production, but are of some interest none-the-less. Figure 7 shows
that quadrant 2 Reynolds shear stress dominates at y* = 38.8, while quadrant 4 is still
large. Ninety-five per cent of the Reynolds shear stress is above the threshold of one. The
next two figures, Figures 8 and 9, show the percentage of Reynolds shear stress above a
threshold of one decreasing as the distance from the wall increases. Figure 10 shows the
distribution half way between the flat plates. In this location there is confusion between
positive and negative normal velocities because what is positive for one wall is negative
for the other. The Reynolds shear stress is almost zero; the resulting quadrature plot is
not too informative, other than showing that the total Reynolds shear stress has 60% of
its contribution above the threshold of one.




3.2 . Instantaneous Velocities In Two Dimensions

The figures in this section are two-dimensional views of velocity vectors in either the
streamwise-normal or spanwise-normal directions. Vectors in the figures have a velocity
unit length of 10 viscous units of distance. Only a small section of the flow field is shown
(typically one quarter of the full two-dimensional view that would be available) so that
some detail can be seen.

The first figure in this section, Figure 11, shows a full cross-section of the flow field;
the bulk flow is into the page. About two-thirds of the velocity vectors have been removed
so that the resulting plot is not a blur of ink. Along a constant value of 150 in the normal
direction there are three distinct large-scale events at spanwise distances of about 200,
700, and 900; these are marked with large circles on the plot. At 200, there is a strong
flow toward the top wall (the top wall is at y* = 300); at 900 there is flow in the opposite
direction. Near 700, the flowfield appears to be a point source of fluid. Along both walls
there appear to be many counter-rotating eddies. At the wall, the velocity vectors alternate
direction every 50 units or so. This is consistent with experiments that have characterized
the spanwise spacing of the eddies [4).

At the top wall and in the spanwise direction at 125 there is a strong flow toward the
wall, or an “inflow.” Again at the top wall and at 325 there is a strong “outflow.” These
two events are marked with large squares on the plot. In these two events, the fluctuating
streamwise velocity is such that large values of Reynolds shear stress are produced; the
proximity to the wall insures that the velocity gradient is large and hence the turbulence
production is large, also (see Equation 5). The next two figures (Figures 12 and 13) expand
the inflow and outflow; also the wall is shown at the bottom of the plot so that y* values
are meaningful and up is positive in the normal direction.

The inflow in Figure 12 is clear at a value of approximately 120; the flow appears to
penetrate the wall (this is an illusion) suggesting a strong negative normal velocity. On
either side of the inflow, the spanwise velocity is directed away from the inflow. The center
of one eddy appears to be at a value of 140 in the spanwise (z*) direction and 15 in the
normal direction. Its associated eddy has a center near z* = 95 (hence, it is centered on
the inflow with respect to the spanwise direction), but it is lifted away from the wall to a
value of about 25. Typically, in- and outflows are not centered between two eddies; this
will be more clear in the next figure. The location of the center is somewhat confused
by the motion of the fluid above the eddy. There are outflows at z+ values of 60 and
155; another inflow is at z* = 225. Thus the spacing of about 100 units between in- and
outflows is found in this small portion of the cross-section.

Figure 13 shows the outflow at a spanwise distance of about 320. On either side of the
outflow, the spanwise velocity is directed toward the outflow. The center of one eddy (the
“right-hand side” ) is located near y* = 22 and z+ = 335; this eddy appears egg-shaped, and
it has a diameter of about 50 units on its long axis and 25 units in the spanwise direction.
Its associated eddy (the “left-hand side”) is located a long distance from the wall near
y* = 50 and z* = 280, and its diameter is over 100 units. Lyons [5] has shown that typical




eddy pairs consist of two eddys of different size, as is found in the pair just described.
Furthermore, the interaction of the eddies with one another (and the surrounding fluid)
causes the eddies to lift away from the wall. Beneath the eddy on the left-hand side of the
outflow i1 Figure 13 fluid is moving in the direction opposite the circulation of the eddy
(the region is encircled on the figure). In some sense, this is similar to a separated flow.
As fluid is entrained in the reverse flow (near z* = 270,y* = 10), the separated region
grows in size and is lifted from the wall. This is shown in Figure 14, which is about 30
units downstream. The region is encircled in this figure, also. Note that the centers of
both the left-hand and right-hand eddies have moved farther from the wall. Going back
to Figure 13, it is possible that the eddy with center located at z* = 410,y* = 30 was at
one time paired with the eddy on the left-hand side of the outflow. In a process similar
to the growth of the separated region just described, the right-hand side eddy may have
been spawned and in that process the original eddies were lifted away from the wall. To
this end, note the small separated regions along the wall at z* = 360 and 450.

The next three figures show streamwise-normal views of the flow field that are centered
on the inflow in the streamwise direction. The bulk flow is in the positive streamwise
direction. Figure 16 is centered on the inflow in the spanwise direction, while Figure 15 is
about 7 units to the left and Figure 17 is 7 units to the right of the inflow. As shown in all
three figures, the fluctuating streamwise velocity is strong and positive in the vicinity of
y* = 11; this coupled with the strong negative normal velocity of the inflow produces large
negative Reynolds shear stress, and that gives a high value to the turbulence production.
Between streamwise values of 200 and 380, there is an organized structure that appears to
be attached to the wall and rises to about y* = 20. These structures are common in all
streamwise-normal views of the flowfield and suggest the process of lifting the eddies off
the wall that was described above. Figure 18 is an expanded view of Figure 16. Here the
inflow with its associated large streamwise velocity is somewhat more clear.

Figures 19 through 21 are similar to the three figures described in the paragraph above;
these three are centered on the outflow. Here, positive normal velocities are associated with
negative streamwise velocities giving large values of the turbulence production. Once again
structures appear attached to the wall and lifted into the outer flow downstream, although
in this case the associated streamwise velocities are negative.

3.3 Instantaneous Keynolds Shear Stress In Two Dimensions

A threshold value of 1.0 for the magnitude of the Reynolds shear stress was used to produce
the figures in this section. The first three figures show Reynolds shear stress above the
threshold in the same cross-sectional view of the flow field as Figure 11. Figure 22 shows
velocity vectors for all quadrant 2 Reynolds shear stress above a threshold of 1.0; Figure 23
shows quadrant 4; and Figure 24 shows both quadrant 1 and 3. Note the approximate
spanwise spacing of 100 units for the quadrant 2 and 4 Reynolds shear stress. Quadrants 1
and 3 have few events where the stress is above the threshold. In the center of the flowfield
at y* = 150, there is some confusion in the sign of the Reynolds shear stress because the



definition of positive and negative changes depending on which wall is being considered.
For this reason, several quadrant 1 and 3 events appear to come from nowhere near the
center; similarly some quadrant 2 and 4 events disappear.

Of more interest are streamwise-spanwise views of the instantaneous fluctuating ve-
locities in that plane, with color used to distinguish between the quadrants. Figures 25
through 31 show these views at the normal distances that were used to produce Figures 3
through 9. Since the normal velocities are somewhat arbitrary in the center of the channel,
the Reynolds shear stress at y* = 144 is not presented. In these figures, Reynolds shear
stress above a threshold dimensionless stress of 1.0 is colored: yellow for quadrants 1 and 3,
blue for quadrant 2, and red for quadrant 4. Green is used for stress below the threshold.
Due to the resolution of the media used to print the color pictures, individual velocity
vectors are not discernable. None-the-less, streaky structures are clear in the pictures. In
the figures, the origin is in the lower left hand corner, the streamwise distance increases to
the right and the spanwise distance increases toward the top of the page. This is shown
in the small schematic on each page.

Figure 25 contians no stress above the threshold level, although there is an indication
of the streaky structures shown in the next figure. At y* = 8.77, a large portion of the
stress above the threshold is in the fourth quadrant; this is consistant with Figure 4. The
streaks of red and blue appear next to one another frequently. These streaks resemble the
streaks found in hydrogen bubble experiments [4]. In these experiments, a bubble wire was
stretched in the spanwise direction across the wall in a water tunnel and was positioned at
various heights above the wall. Streaks of bubbles would form in the streamwise direction,
suggesting the near-wall counter-rotating eddies that pump fluid from the wall to the outer
flow and vice versa. These streaky structures were evenly spaced at about 100 viscous units.
Lyons [5] showed streaky structures in Reynolds shear stress, also.

Figure 27 is at y* = 11.4, where the production of turbulence is a maximum. Again,
the streaky structures are clear. The spanwise spacing of approximately 100 units is
maintained. At a larger normal distance (Figure 28), the streaks tend to broaden. The
quadrant 1 and 3 events appear to be much more fan-like and do not form streaks. Figure 29
shows the steaky structures begining to break up and either become less elongated or curl
up. Again, this is consistant with hydrogen bubble experiments. At this distance, second
quadrant stress dominates fourth quadrant stress.

At y* = 66.6 (Figure 30), the streaky structures have almost disappeared and the
stress appears as blobs of color. Quadrant 1 and 3 stress is now significant. It continues
to be significant in the next figure, Figure 31, where there is little quadrant four stress.

3.4 Instantaneous Reynolds Shear Stress In Three Dimensions

Unfortunately, three-dimensional views do not reproduce well, nor is it possible to show

the animated views that were produced using the data from the simulation.
Three-dimensional views of Reynolds shear stress were produced by coloring three-

dimensional regions in the flow field where the stress was above some threshold (usually




1.0). These views showed the shape of iso-surfaces of Reynolds shear stress and suggested
that the streaks were not connected at large values of normal distance. Efforts to visualize
hairpin-like structures in Reynolds shear stress were unsuccessful.

Time-varying velocity vectors colored with Reynolds shear stress above a certain thresh-
old were animated in two-dimensions to produce, for example, a time-varying streamwise-
spanwise view at a constant normal distance. These studies showed streaky structures
of Reynolds shear stress that followed closely the motions of hydrogen bubbles in wall
bounded shearflow.

4 Conclusions

Reynolds shear stress appears to mark structures that are similar to those marked by hy-
drogen bubbles in the near-wall region of wall bounded shear flows. This is been observed
by others, but not from animated views that match closely the physical experiments. Fur-
ther study should concentrate on describing the motion of the streaky structures. Three-
dimensional views of the Reynolds shear stress reveal elongated structures in the near-wall
region that do not appear to be connected at larger normal distances.
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Figure 12: Spanwise-Normal View of an Inflow
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Figure 14: Spanwise-Normal View of an Outflow; Downstream of Main Flow
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Figure 15: Streamwise-Normal View of an Inflow; Left Side
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Figure 16: Streamwise-Normal View of an Inflow; Center
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